Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Hazard Mater ; 449: 131038, 2023 05 05.
Article in English | MEDLINE | ID: covidwho-2239747

ABSTRACT

Face masks (FMs) are essential to limit the spread of the coronavirus during pandemic, a considerable of which are accumulated on the coast. However, limited is known about the microbial profile in the biofilm of the face masks (so-called plastisphere) and the impacts of face masks on the surrounding environments. We herein performed face mask exposures to coastal sediments and characterized the microbial community and the antibiotic resistome. We detected 64 antibiotic-resistance genes (ARGs) and 12 mobile gene elements (MGEs) in the plastisphere. Significant enrichments were found in the relative abundance of total ARGs in the plastisphere compared to the sediments. In detail, the relative abundance of tetracycline, multidrug, macrolide-lincosamide-streptogramin B (MLSB), and phenicol-resistant genes had increased by 5-10 times. Moreover, the relative abundance of specific hydrocarbonoclastic bacteria (e.g., Polycyclovorans sp.), pathogens (e.g., Pseudomonas oleovorans), and total MGEs significantly increased in the sediments after face mask exposure, which was congruent with the alteration of pH value and metal concentrations in the microcosms. Our study demonstrated the negative impacts of FMs on coastal environments regardless of the profiles of ARGs or pathogens. These findings improved the understanding of the ecological risks of face masks and underlined the importance of beach cleaning.


Subject(s)
Anti-Bacterial Agents , Microbiota , Genes, Bacterial , Masks , Bacteria/genetics
2.
The Science of the total environment ; 774:145638-145638, 2021.
Article in English | EuropePMC | ID: covidwho-2167868

ABSTRACT

Throughout the COVID-19 pandemic, the application of residual free chlorine has been emphasized as an effective disinfectant;however, the discharged residual chlorine is associated with potential ecological risk at concentrations even below 0.1 mg/L. However, the influence of free chlorine at ultralow-doses (far below 0.01 mg/L) on phytoplankton remains unclear. Due to limitations of detection limit and non-linear dissolution, different dilution rates (1/500, 1/1000, 1/5000, 1/10000, and 1/50000 DR) of a NaClO stock solution (1 mg/L) were adopted to represent ultralow-dose NaClO gradients. Two typical microalgae species, cyanobacterium Microcystis aeruginosa and chlorophyta Chlorella vulgaris, were explored under solo- and co-culture conditions to analyze the inhibitory effects of NaClO on microalgae growth and membrane damage. Additionally, the effects of ultralow-dose NaClO on photosynthesis activity, intracellular reactive oxygen species (ROS) production, and esterase activity were investigated, in order to explore physiological changes and sensitivity. With an initial microalgae cell density of approximately 1 × 106 cell/mL, an inhibitory effect on M. aeruginosa was achieved at a NaClO dosage above 1/10000 DR, which was lower than that of C. vulgaris (above 1/5000 DR). The variation in membrane integrity and photosynthetic activity further demonstrated that the sensitivity of M. aeruginosa to NaClO was higher than that of C. vulgaris, both in solo- and co-culture conditions. Moreover, NaClO is able to interfere with photosynthetic activity, ROS levels, and esterase activity. Photosynthetic activity declined gradually in both microalgae species under sensitive NaClO dosage, but esterase activity increased more rapidly in M. aeruginosa, similar to the behavior of ROS in C. vulgaris. These findings of differing NaClO sensitivity and variations in physiological activity between the two microalgae species contribute to a clearer understanding of the potential ecological risk associated with ultralow-dose chlorine, and provide a basis for practical considerations. Graphical Unlabelled Image

3.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1270648

ABSTRACT

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , Aquatic Organisms , Disinfectants/toxicity , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL